
Concurrency, Convertibility, and Complexity in POCL Planning
Harrison Oates

Supervisor: Pascal Bercher

School of Computing, Australian National University

Introduction

Non-sequential plan representations, especially partial

order causal link (POCL) plans are useful for modelling

concurrency, but their computational properties are of-

ten misunderstood. Makespan is the minimum time re-

quired to execute a plan under parallelism.

The below three figures are plans for the task of making

breakfast. Figure 1 is a parallel plan, which comprises

of action sets, Figure 2 is a partial order (PO) plan, and

Figure 3 is a POCLplan. Each of these solve the breakfast

problem with makespan 2.

hw

hotw

¬hw

boil

hcb

gc

¬hcb

grind

hotw

gc

hc

¬hotw

¬gc

make coffee

hb

ht

¬hb

toast

A1 A2

hw

hcb

hb

hotw
gc
hb

hc

ht

s0 s1 s2

Figure 1. A parallel plan for the breakfast problem

hw

hotw

¬hw

boil

hcb

gc

¬hcb

grind

hb

ht

¬hb

toast

hotw

gc

hc

¬hotw
¬gc

make coffee

<

<

Figure 2. A PO plan for the breakfast problem. The arrows

represent ordering constraints in ≺ necessary to ensure every

linearisation is executable.

hw

hcg

hb

hw

hotw

¬hwboil

hcb

gc

¬hcb
grind

hb

ht

¬hb
toast

hotw

gc

hc

¬hotw

¬gc
make coffee

hc

ht

Figure 3. A POCL plan for the breakfast problem. Arrows depict

causal links and implied ordering constraints are not shown.

Complexity Classes at a Glance

P: Problems solvable in polynomial time

(deterministic).

NP: Solutions verifiable in polynomial time; finding

them may require exponential time.

PSPACE: Problems solvable using polynomial space

(time may be exponential).

EXPTIME: Problems requiring exponential time in

the worst case.

NEXPTIME: Nondeterministic exponential time;

contains all problems in EXPTIME.

EXPSPACE: Problems requiring exponential space;

contains all previous classes.

Makespan Convertibility Does Not Hold In
General

In the ordering

Sequential → Parallel → PO → POCL

We can preservemakespan going from left to right, but

right to left only works when converting from a POCL

plan to a PO plan.

Sequential
Plans

Parallel Plans PO Plans

POCL Plans

Figure 4. Makespan convertibility between plan representations.

Solid green arrows indicate makespan can always be preserved.

Dashed red arrows indicate makespan is not generally preserved.

The Counterexample

In the below plan, while a1 and a2 are unordered and thus

share the same optimal release time, they have inconsis-

tent effects, which violates the non-interference criteria

for parallel plans. Therefore, a1 and a2 must be serialized

in any valid parallel plan, even though the POCL struc-

ture allows them to be concurrent.

s

s
p
c

a1

s d
¬pa2

c

d

Figure 5. A POCL plan where unordered actions a1 and a2 have

inconsistent effects.

Consequences Of Makespan
Non-Convertibility

We refute Theorem 1 of Pecora et al. (2006), which

claims that planning graph planners maximise PO

concurrency.

Heuristics admissible for makespan-optimal

parallel planning are inadmissible for

makespan-optimal PO and POCL planning. An

example is hm
p by Haslum and Geffner (2000).

‘Optimal’ POCL planners like CPT (Vidal and

Geffner, 2006) that rely on these heuristics

guarantee optimality only within the space of POCL

plans that can be represented as parallel plans, not

within the general space of POCL plans.

Makespan Complexity Results

It is NP–complete to transform a POCL plan into a

makespan-optimal parallel plan. Reduce from

graph-colouring. We also establish tight bounds on

the makespan!

It is PSPACE–complete to decide if a planning

problem has a parallel, PO or POCL plan with

makespan ≤ k for binary k.
It is NP–complete to decide if a planning problem

has a parallel, PO or POCL plan with makespan ≤ k
for unary k.

Deciding Lifted POCL Planning Problems

We investigate POCL problems in the lifted setting,

where action schemas use first-order terms rather

than propositions in their preconditions and effects.

Lifted reasoning avoids the combinatorial explosion

of grounding all actions and predicates.

We introduce a novel framework that characterises

delete relaxation across two orthogonal

dimensions: the scope of relaxation (which plan

steps are relaxed) and whether causal links are

respected.

P (d)

R(c)

Q(e)

Q(a)

P (d) Q(e)
A(d, e)

P (b) Q(a)
A(b, a)

Insertable action schema:
R(?x)

P (?y)

¬P (?z)B(?x, ?y, ?z)

Figure 6. Inserting B(c, b, d) into a plan with a causal link on P (d).
Under A-relaxation, the step is delete-free and poses no threat.

Under A-relaxation respecting causal links, the unrelaxed action

deletes P (d), so a threat is detected, even though P (d) won’t
actually be deleted in execution.

Lifted POCL Plan Existence Complexity
Results

Relaxation Type
Initial

Plan

New

Action

Respects

Links?

Complexity

(Complete For)

None (Unrelaxed) Original Original N/A EXPSPACE

P-relaxed Relaxed Original No EXPSPACE

A-relaxed Original Relaxed No EXPTIME

AP-relaxed Relaxed Relaxed No EXPTIME

A-relaxed (RL) Original Relaxed Yes EXPTIME

AP-relaxed (RL) Relaxed Relaxed Yes EXPTIME

Table 1. Complexity of plan existence in lifted POCL planning

under different delete relaxations. ‘RL’ variants respect causal

links.

Complexity Results for Bounded POCL
Problems

Bound Type Complexity

Length-bounded (All) NEXPTIME–complete

Makespan-bounded (Unrelaxed) NEXPTIME–complete

Makespan-bounded (Relaxed) in NEXPTIME

Table 2. Complexity of bounded plan refinement in lifted POCL

planning. ‘Relaxed’ refers to all delete relaxation variants.

No Gain from Further Relaxation

Unlike in the ground setting, changing the scope of delete

relaxation does not fundamentally reduce the complexity

of lifted POCL planning.

For both A-relaxation (new actions are delete-free)

and AP-relaxation (all actions are delete-free), plan

existence remains EXPTIME–complete.

This holds even if the initial plan is totally ordered

or if pre-existing causal links are protected.

Insight: The hardness is rooted in reasoning about

variable assignments and the exponential number

of potential groundings, which is not simplified by

ignoring delete effects.

If we bound the length or makespan of the POCL plan,

delete relaxation does not make the problem easier at all!

https://www.harrisonoates.com COMP3770 ’25 - Research Project (R&D) harrison.oates@anu.edu.au

https://www.example.com
mailto:harrison.oates@anu.edu.au

