Concurrency, Convertibility, and Complexity in POCL Planning

Harrison Oates

Supervisor: Pascal Bercher

School of Computing, Australian National University

Introduction

Non-sequential plan representations, especially partial
order causal link (POCL) plans are useful for modelling
concurrency, but their computational properties are of-
ten misunderstood. Makespan is the minimum time re-
quired to execute a plan under parallelism.

The below three figures are plans for the task of making
breakfast. Figure 1 is a parallel plan, which comprises
of action sets, Figure 2 is a partial order (PO) plan, and
Figure 3 isa POCL plan. Each of these solve the breakfast
problem with makespan 2.

—hot,
—Jc

Figure 2. A PO plan for the breakfast problem. The arrows
represent ordering constraints in < necessary to ensure every
linearisation is executable.

Fligure 3. A POCL plan for the breakfast problem. Arrows depict
causal links and implied ordering constraints are not shown.

Complexity Classes at a Glance

Makespan Convertibility Does Not Hold In
General

In the ordering
Sequential — Parallel - PO — POCL

We can preserve makespan going from left to right, but
right to left only works when converting from a POCL
plan to a PO plan.

Plans

[Sequential]
.Y AR

PO Plans]

\

\"“-*[POCL Plans

Fleure 4. Makespan convertibility between plan representations.
Solid green arrows indicate makespan can always be preserved.
Dashed red arrows indicate makespan is not generally preserved.

The Counterexample

= P: Problems solvable in polynomial time
(deterministic).

= NP: Solutions verifiable in polynomial time; finding
them may require exponential time.

= PSPACE: Problems solvable using polynomial space
(fime may be exponential).

= EXPTIME: Problems requiring exponential time in
the worst case.

= NEXPTIME: Nondeterministic exponential time;
contains all problems in EXPTIME.

= EXPSPACE: Problems requiring exponential space;
contains all previous classes.

In the below plan, while a; and as are unordered and thus
share the same optimal release time, they have inconsis-
tent effects, which violates the non-interference criteria
for parallel plans. Therefore, a; and a, must be serialized
in any valid parallel plan, even though the POCL struc-
ture allows them to be concurrent.

B e
—p

Fligure 5. A POCL plan where unordered actions a; and a» have
Inconsistent effects.

Consequences Of Makespan
Non-Convertibility

Deciding Lifted POCL Planning Problems

= We investigate POCL problems in the lifted setting,
where action schemas use first-order terms rather
than propositions in their preconditions and effects.

= Lifted reasoning avoids the combinatorial explosion
of grounding all actions and predicates.

= We introduce a novel framework that characterises
delete relaxation across two orthogonal
dimensions: the scope of relaxation (which plan
steps are relaxed) and whether causal links are
respected.

P(d)

P(d) /

R(c)

P(b)

P(7y)

R(?x) o)

Insertable action schema:

Figure 6. Inserting B(c, b, d) into a plan with a causal link on P(d).
Under A-relaxation, the step is delete-free and poses no threat.
Under A-relaxation respecting causal links, the unrelaxed action
deletes P(d), so a threat is detected, even though P(d) won't
actually be deleted in execution.

Lifted POCL Plan Existence Complexity
Results

= We refute Theorem 1 of Pecora et al. (2006), which
claims that planning graph planners maximise PO
concurrency.

= Heuristics admissible for makespan-optimal
parallel planning are inadmissible for
makespan-optimal PO and POCL planning. An
example is h;' by Haslum and Geffner (2000).

= ‘Optimal’ POCL planners like CPT (Vidal and
Geffner, 2006) that rely on these heuristics
guarantee optimality only within the space of POCL
plans that can be represented as parallel plans, not
within the general space of POCL plans.

Makespan Complexity Results

= [t is NP-complete to transform a POCL plan into a
makespan-optimal parallel plan. Reduce from
ograph-colouring. We also establish tight bounds on
the makespan!

= |t is PSPACE-complete to decide if a planning
problem has a parallel, PO or POCL plan with
makespan < k for binary k.

= [t is NP-complete to decide if a planning problem
has a parallel, PO or POCL plan with makespan < k
for unary k.

P2 Australian
> National
7 University

h
—

COMP3770 '25 - Research Project (R&D)

Inittal New Respects Complexity

Relzationiiiyne Plan Action Links? (Complete For)
None (Unrelaxed) Original Original N/A EXPSPACE
P-relaxed Relaxed Original No EXPSPACE
A-relaxed Original Relaxed No EXPTIME
AP-relaxed Relaxed Relaxed NoO EXPTIME
A-relaxed (RL) Original Relaxed Yes EXPTIME
AP-relaxed (RL) Relaxed Relaxed Yes EXPTIME

Table 1. Complexity of plan existence in lifted POCL planning
under different delete relaxations. ‘RL variants respect causal
links.

Complexity Results for Bounded POCL
Problems

Bound Type Complexity

| ength-bounded (All) NEXPTIME-complete
Makespan-bounded (Unrelaxed) NEXPTIME-complete
Makespan-bounded (Relaxed) in NEXPTIME

Table 2. Complexity of bounded plan refinement in lifted POCL
planning. ‘Relaxed’ refers to all delete relaxation variants.

No Gain from Further Relaxation

Unlike in the ground setting, changing the scope of delete
relaxation does not fundamentally reduce the complexity
of lifted POCL planning.

= For both A-relaxation (new actions are delete-free)
and AP-relaxation (all actions are delete-free), plan
existence remains EXPTIME-complete.

= This holds even if the initial plan is totally ordered
or if pre-existing causal links are protected.

= Insight: The hardness is rooted in reasoning about
variable assignments and the exponential number
of potential groundings, which is not simplified by
ignoring delete effects.

If we bound the length or makespan of the POCL plan,
delete relaxation does not make the problem easier at all!

harrison.oates@anu.edu.au

https.//www.harrisonoates.com

https://www.example.com
mailto:harrison.oates@anu.edu.au

