
Theorem Provers: One Size Fits All?
HARRISON OATES, The Australian National University, Australia
GEUN YUN, The Australian National University, Australia
NIKHILA GURUSINGHE, The Australian National University, Australia

Theorem provers are important tools for people working in formal verification. There are amyriad of interactive
systems available today, with varying features and approaches motivating their development. These design
choices impact their usability, alongside the problem domain in which they are employed. We test-drive two
such provers — Coq and Idris2 — by proving the correctness of insertion sort, before providing a qualitative
evaluation of their performance. We then compare their community and library support. This work helps
users to make an informed choice of system, and highlight approaches in other systems that developers might
find useful.

CCS Concepts: • Theory of computation→ Proof theory; Type theory; Logic and verification.

Additional Key Words and Phrases: Theorem Provers, Coq, Idris2

ACM Reference Format:
Harrison Oates, Geun Yun, and Nikhila Gurusinghe. 2023. Theorem Provers: One Size Fits All?. In COMP2560
’23: ANU Symposium on Studies in Advanced Computing R&D, November 12–14, 2023, Canberra, ACT. ACM,
New York, NY, USA, 10 pages. https://doi.org/7468212.7300256

1 INTRODUCTION
The field of theorem proving systems seems to be at a turning point, with the role of a prover
undergoing an evolution from a mere assistant to a necessity. Distinguished Mathematics Professor
Kontorovich mentions this in their foreword to the Experimental Mathematics’ Special Issue on
Interactive Theorem Provers [10], positing that in the near future highly regarded journals will
only accept proofs formalized in theorem proving systems. Going further, Kontorovich states that
this is not as radical as it may seem since similar transitions have occurred: there was a point in the
19th century when it became required for calculus research papers to present proofs in Cauchy’s
𝜖/𝛿 formalism. The necessity of theorem proving systems is further underscored by Nawaz et al.
[13], who points to incidents such the 2009 crash of Air France Flight 447 (228 deaths), the 2009
Washington Metro collision (80 severe injuries, 9 deaths); and the infamous Therac 25 incidents,
resulting in several peoples’ deaths. These incidents all arose from faulty software and could have
been avoided if these systems were validated mathematically; demonstrating why formalisation
with theorem provers are a necessity for mission critical systems [13]. Consequently, the importance
of mathematical formalization within the literature justifies a broader understanding of the state of
the theorem proving landscape. Comparison studies, especially those focusing on novel theorem
proving systems, can adequately provide this within the literature. We make a specific contribution
to this domain through comparing the interactive provers Coq and Idris2 for their approach through
a user-experience lens.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
COMP2560 ’23, November 01, 2023, Canberra, ACT
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-2601-7/18/06. . . $15.00
https://doi.org/7468212.7300256

1

https://doi.org/7468212.7300256
https://doi.org/7468212.7300256

COMP2560 ’23, November 01, 2023, Canberra, ACT Oates, Yun and Gurusinghe

2 BACKGROUND
2.1 The provers
Coq, first released in 1989, is an interactive theorem prover (ITP) built upon the Calculus of Inductive
Constructions [8], a constructive type system, and developed in OCaml. The prover allows users to
state theorems and software specifications and then interactively develop formal proofs of these
theorems through tactics. Generated proofs are machine-checked by a certification kernel to verify
the validity of the developed proof. Some notable uses of Coq include the development of CompCert,
a formally-verified optimizing compiler for C99 [11], as well as a proof of the four colour theorem
[6].

Released in 2020, Idris2 is a relatively new purely functional programming language descended
from Idris/Idris1 (initial release 2007) with first class dependent types [3]. In contrast to Coq, it is
primarily designed as a general-purpose programming language rather than as a dedicated theorem
prover. Like Coq, Idris2 uses a constructive logic [14], but with extensions from quantitative type
theory that allow the user to specify when a function can run, not just a function’s intended, proven
purpose. The utility of this is immediately apparent, with the developers giving the example of
guaranteeing an ATM only dispenses cash at most once per card insertion [3].

2.2 Related work
There is no shortage of research comparing theorem provers on the attributes and features associated
with them. Many of these are in-depth with expansive investigation such as [16], which offers a
fifteen-way comparison of industrial-strength mathematical provers, aiming to demonstrate the
variety of approaches available for the problem of formalizing mathematics. These studies tend to
focus on the size of the standard library, the strength of their logic, and the level of automation that
each system offers. [16] was a companion paper to [17], which compiled proofs of the irrationality
of

√
2 in a superset of these provers as a means of direct comparison. The latter paper’s focus was

on the appearance of proof formalization results, rather than on the formalization experience of
users. Other papers, such as [13], do not test-drive the provers and instead rely on surveys from
developers and online benchmarks to draw their conclusions, although these are fewer in number.
However, there is a shortage of research comparing novel theorem provers. This shortage is

especially evident for newer systems. Examples include [18], [19], and [9], which all evaluate and
compare Coq and Isabelle/HOL –– the regularity of this topic is emblematic of a common trend
within the theorem proving comparison literature. Interestingly, this disparity seems to occur
independently of the market share of a theorem proving system as for instance Lean — the theorem
prover of choice for many studies aiming to formalize mathematical concepts — seems to have
very little coverage in terms of studies directly comparing it to other theorem provers. This is
because many of the in-depth studies tend to focus on popular and more well-established theorem
provers such as Coq or Isabelle/HOL — provers that were released over thirty years ago. As a result,
there is a distinct scarcity of literature that compares newer systems such as Idris2 against these
well-established theorem provers. Moreover, papers may be rendered obsolete due to their age and
subsequent development of the examined systems.
As much as this could be justified by how novel these theorem provers are, it is worrying that,

in many cases, there is little literature comparing these theorem provers at all. As a result, it is
difficult to ascertain the true dimensions of the current theorem proving landscape in terms of what
options exist, the power of these options as well as the features that they offer. Zammit mentions
this in their comparison of Coq and HOL [19], stating that many users of theorem provers lack
the perspective of knowing more than one such system, justifying this by stating that becoming
proficient with a theorem proving system is a time-consuming task. Going further Zammit argues

2

Theorem Provers: One Size Fits All? COMP2560 ’23, November 01, 2023, Canberra, ACT

that comparison studies which compare a user’s preferred theorem prover with others concretes
their understanding of the system they are familiar with whilst providing them better perspective
about others. Hence, these types of studies form an important portion of the literature and can be
informative in terms of how one is to go about proving the correctness of a given algorithm.

3 COMPARING THE PROVERS
3.1 Installing the provers
The experience of setting up the provers varied greatly between the systems. Coq provides pre-built
binaries for all operating systems, alongside package offerings for the main Linux package managers,
while Idris2 requires compilation from source. We downloaded Coq from archlinux-community
and interacted with the system through the VSCoq extension for VS Code1. Proof General2 or
CoqIDE3 are more commonly used than VSCoq according to a 2022 community survey [4], however
we chose the alternate tooling to better reflect how a new user, coming from Haskell, might start
learning the system.

Idris2 notionally supports all major operating systems, requiring either Chez Scheme or Racket
in order to bootstrap Idris2, with Windows additionally requiring MSYS2 to simulate a unix-like
environment. When we attempted installation on Windows, we ran into difficulties with Chez
Scheme’s path involving spaces which could not be resolved even after help from the language’s
community forums. We eventually switched to installing the system via WSL, which required only
a single make command after downloading the source. Like Coq, we used a VSCode extension4 to
install the language server protocol for quality-of-life improvements.

3.2 Proof writing
To provide a benchmark by which to compare the experience, we showed the correctness of
polymorphic insertion sort in each prover using multisets. In Haskell:

insert :: Ord a => a -> [a] -> [a]
insert i [] = []
insert i (x : xs) = if i <= x then (i : x : xs) else (x : insert i xs)

sort :: Ord a => [a] -> [a]
sort [] = []
sort (x : xs) = insert x (sort xs)

To do this, we require a predicate sorted, defined inductively as follows:

sorted [] (1)
∀𝑛, (sorted [n]) (2)
∀𝑚𝑛𝑝, (leq 𝑛𝑚 → sorted (𝑚 : 𝑝) → sorted (𝑛 :𝑚 : 𝑝)) (3)

alongside a total ordering leq and a function to return the contents of a list,

contents : list 𝐴 → multiset 𝐴.

Multisets 𝐴 and 𝐵 are considered equal if and only if the multiplicities of all elements in 𝐴 and 𝐵
are the same.

1https://github.com/coq-community/vscoq
2https://proofgeneral.github.io/
3https://opam.ocaml.org/packages/coqide/
4https://github.com/bamboo/idris2-lsp-vscode

3

https://github.com/coq-community/vscoq
https://proofgeneral.github.io/
https://opam.ocaml.org/packages/coqide/
https://github.com/bamboo/idris2-lsp-vscode

COMP2560 ’23, November 01, 2023, Canberra, ACT Oates, Yun and Gurusinghe

We need to prove three lemmas (explicitly or otherwise):

∀𝑥 : 𝐴, 𝑙 : list 𝐴, (contents (insert 𝑥 𝑙) = contents (𝑥 : 𝑙)) (4)
∀𝑥 : 𝐴, 𝑙 : list 𝐴, (sorted 𝑙 → sorted (insert 𝑥 𝑙)) (5)

∀𝑙 : list 𝐴, (contents 𝑙 = contents (sort 𝑙)) (6)

In order to prove the main theorem:

∀𝑙 : list 𝐴, (contents 𝑙 = contents (sort 𝑙) ∧ sorted (sort 𝑙)).

We were permitted to use the standard libraries of each language as required. The proofs can be
be found at https://github.com/HarrisonOates/COMP2560-Theorem-Prover-Code and we refer to
them throughout this section.

3.2.1 Defining functions. The Haskell specification translates to each language relatively easily,
with some language specific quirks.

Inductive sorted : list A -> Prop :=
| sorted_nil : sorted []
| sorted_singleton : forall n, sorted [n]
| sorted_cons : forall n m p, leq n m -> sorted (m :: p) -> sorted (n :: m :: p).

The Coq specification for sorted uses the type Prop of propositions, but if-statements require a
statement of type bool. The types are not interchangeable because booleans are guaranteed to
be decidable while propositions are not, so this necessitated a decidability hypothesis leq_dec.
Hypotheses for the transitivity and totality of leq also need to be specified:

Hypothesis leq_dec : forall a b, {leq a b} + {~ leq a b}.
Hypothesis leq_trans : forall a b c, leq a b -> leq b c -> leq a c.
Hypothesis leq_total : forall a b, ~ leq a b -> leq b a.

Hence leq_dec is used to write insertion sort:

Fixpoint insert (i : A) (l : list A) :=
match l with
| [] => [i]
| x :: xs => if leq_dec i x then (i :: x :: xs) else (x :: insert i xs)
end.

Fixpoint sort (l : list A) : list A :=
match l with
| [] => []
| x :: xs => insert x (sort xs)
end.

When a program invokes the created proof for an arbitrary type, the user will need to provide an
implementation of leq for that type and a proof that the stated hypotheses are satisfied.

4

https://github.com/HarrisonOates/COMP2560-Theorem-Prover-Code

Theorem Provers: One Size Fits All? COMP2560 ’23, November 01, 2023, Canberra, ACT

Unlike Coq, in Idris2 there is no dedicated terminology for different parts of the proof, such
as Inductive, Hypothesis and Fixpoint, as they are all defined as their own functions. Each
proposition is constructed as types to form functions, as can be seen in type IsSorted that defines
the sorted predicate.

data IsSorted : (xs:Vect n e) -> Type where
IsSortedZero :

IsSorted Nil
IsSortedOne :

Ord e =>
(x:e) ->
IsSorted (x::Nil)

IsSortedMany :
Ord e =>
(x:e) -> (y:e) -> (ys:Vect n'' e) -> -- (n'' == (n - 2))
(IsLte x y) -> IsSorted (y::ys) ->
IsSorted (x::(y::ys))

With this implementation, any Vect in IsSorted type now guarantees that it is sorted in non-
decreasing order. This type is then used in process of deriving and proving the predicates of insert.
It should also be noted that the data type as a whole is used to define the function but its specific
cases, such as IsSortedZero and IsSortedOne, are utilized for the implementation.

insert :
Ord e =>
(xs:Vect n e) -> (y:e) -> (IsSorted xs) ->
(xs':(Vect (S n) e) ** ((IsSorted xs'), (ElemsAreSame (y::xs) xs')))

insert Nil y IsSortedZero =
([y] ** (IsSortedOne y, XsIsXs [y]))

insert (x::xs) y proofXXsIsSorted =
let proofHeadOfXXsIsX = the (HeadIs (x::xs) x) MkHeadIs in
case (insert' (x::xs) y proofXXsIsSorted proofHeadOfXXsIsX) of

(xs' ** (proofXsNewIsSorted, proofHeadXsNewIsXOrY, proofYXXsIsXsNew)) =>
(xs' ** (proofXsNewIsSorted, proofYXXsIsXsNew))

A quirk of the implementation is that the proof uses the Vect type rather than List, which seems
counterintuitive. Vect, as the type of “lists with length” [15] was chosen for the implementation
over List based on an experienced user suggestion. We note that Data.Vect provides fromList
and Foldable provides toList, which both preserve ordering of the elements. Accordingly, List
is also supported by this implementation. In the REPL, this detail is unimportant (because the size
of the list is known at runtime) and sort can be directly applied without repercussions.

Such types can be used as a part of theorems, asking for the proof for its property in order for the
theorems (functions) to be compiled, as can be seen in the main theorem insertionSort (lines 180-
185). This idea of having ‘propositions as types’ provides a unified approach between computational
and proof-oriented constructs [2]. In other words, there are no specific terminologies insinuating
the purpose of functions like variable and Hypothesis, nor requiring separate variables like Prop
for “things to be proven" and bool for “things to be computed", in contrast to Coq.
Specifying sort from the Haskell definition was trivial in Coq, with a clear correspondence

between the two functions (lines 36-46). Idris2, however, builds the proof directly into the function,
so the relation between our Haskell sort and Idris2’ insertionSort (lines 182-195) is less clear.

5

COMP2560 ’23, November 01, 2023, Canberra, ACT Oates, Yun and Gurusinghe

This represents a major difference in philosophy: In Coq, the user creates the function and then
proves its properties, while Idris2 creates and proves a function correct simultaneously.

3.2.2 Interacting with the engine. The main way of manipulating the proof state in Coq is through
tactics, which constitute steps in the proof. Each tactic is stepped through and checked by the
kernel in real time, throwing an error in the IDE if it is not a valid application of a tactic. Coq
also accepts inserting proof terms into the system directly in a manner similar to Idris2, which we
discuss below. This offers finer-grained control for users that desire it.

Idris1 used to have tactics in a similar vein to Coq [15]. The majority of tactics were deprecated
during the transition to Idris2, as this version focused on providing a more minimal core for better
efficiency and dependability. Nevertheless, due to the Curry-Howard Correspondence, the following
relationships between proof system and Idris2’s computation model can be established [5]:

• Propositions in Logic corresponds to Type in Idris2
• Proofs in Logic corresponds to Terms/Programs in Idris2
• Simplification of proofs in Logic corresponds to evaluation of program/normalisation of
proofs in Idris2

In summary, Idris2 accepts an implementation of function to be a valid proof, where the function is
the theorem consisting of propositions expressed as types, if it compiles without any holes. Holes
(LHS = ?{hole_name}) are unwritten right hand sides of proofs that can be revised later when
writing functions incrementally.

3.2.3 Recovery and Maintainability. Recovery refers to the ability to change approach while writing
a proof. Both Coq and Idris2 have features that facilitate recovery as many ‘interactive’ theorem
provers innately do. Coq can undo a tactic or series of tactics by stepping backwards through proof
state, so navigating to an earlier instance of the current proof is simple. If the user wishes to add
a theorem above the current proof, the system allows for their proof to be temporarily omitted
with the Admitted command. This accepts the stated proposition as an axiom, with the intention
that the user returns to implement the proof later, similar to holes in Idris2. In a similar manner,
using helper functions in Idris2 allows for incremental changes so logical or syntactic errors can be
isolated to each function. The REPL helps facilitate this process by catching errors at compile time.

Maintainability is facilitated by both systems in the form of proof searches. In Idris2, this occurs
through the REPL command :ps n f or simply hovering the cursor on the hole, which searches
for a proof to fill hole f at line n. The example below clearly demonstrates how the right hand side
of insertionSort’s base case can be immediately filled with help from such interactive feature:

186 insertionSort Nil = ?insertionSort_rhs_0
-- (terminal command)
InsertionSort> :ps 186 insertionSort_rhs_0
([] ** (IsSortedZero, NilIsNil))

Coq takes a slightly different approach to search, instead specifying the ‘shape’ of a theorem as a
line in the proof:

Search (_ + _ <= _ + _).
(* Results in a list of all imported theorems that match the shape, e.g *)
Plus.plus_le_compat_r_stt: forall n m p : nat, n <= m -> n + p <= m + p
Nat.crossmul_le_addsquare:
forall a b : nat, 0 <= a -> 0 <= b -> b * a + a * b <= a * a + b * b

6

Theorem Provers: One Size Fits All? COMP2560 ’23, November 01, 2023, Canberra, ACT

Coq’s approach has the advantage of the user not needing to change to change keyboard focus in
order to find their results. Search in both systems helps the user to use previous results, thereby
avoiding duplication of code.

3.3 Running programs
The method by which to compile and run programs varies across the systems. Within a proof
session, Coq can evaluate terms, printing an output when the checker steps over the step:

Definition simpleReverseList := rev [1;2;3].
Eval compute in simpleReverseList. (* = [3;2;1] : list nat *)

Needless to say, this isn’t particularly useful. Instead, programs written in Coq can be ‘extracted’ to
Haskell, OCaml, or Scheme, allowing the user to compile and run it in their preferred language.
This is natively supported through the Extraction keyword. Proofs of the correctness of this
process are discussed in [12].

This conversion does not come without its disadvantages. When we ran small-scale benchmarks
of the extracted Haskell for a list of Ints, the extracted version took 23% more time and 13% more
memory than our hand-written insertion sort for a 1000-element reversed order list, with the
performance penalty decreasing to 9.2% more time and 7% more memory for a 10000-element list.
The conversion did not use native Haskell types, instead creating its own List type, and required
instantiation of leq_dec and type A before it would run. While there exist techniques for using
native types at time of extraction to improve performance, such as extracting nat to Int, the size
of Int is finite. Accordingly, using this technique there exist theorems that can be proven in Coq
that would not hold in the resulting Haskell extraction [1], impacting guarantees of correctness.
This additional layer of complexity makes running extracted Coq programs efficently a more

involved process than Idris2, which can compile from source to an executable without additional
steps. The snippet below corroborates the easiness to run the final insertionSort that guarantees
the propert of sorted and preserves the contents:

insertionSort :
Ord e =>
(xs:Vect n e) ->
(xs':Vect n e ** (IsSorted xs', ElemsAreSame xs xs'))

-- (terminal command)
InsertionSort> insertionSort [2,1,3]
([1, 2, 3] ** (sorted proof, contents proof (too long to be displayed)))

Such readiness to be computed is thought to be a significant advantage for programmers who
require proof of their executable functions’ properties. One very important aspect of Idris2 during
run time is the Quantitative Type Theory (QTT) [3]. Every single variable in Idris2 has one of
three quantities that corresponds to the number of its usage at run time, which are either 0, 1 or
unrestricted. Having the quantity as 0, also known as erasure, brings preciseness to examining
which values are relevant at run time, and which are compile time only. Some of the common
erasure variables are type of element e and size of Vect n, as they are only needed to initialize
function properties at compile time. The linearity with quantity of 1 indicates that a variable must
be used exactly once, whether the type variable is pattern matched or the function variable is
applied. Although not compulsory, users can inspect the condition of holes easier by explicitly
specifying such quantity. Exploitation of the QTT also improves performance as irrelevant variables
at run time are automatically handled.

7

COMP2560 ’23, November 01, 2023, Canberra, ACT Oates, Yun and Gurusinghe

3.3.1 Termination. Consider the following non-terminating Haskell program:

endless :: Int -> Int
endless x = endless (x + 1)

This will compile and run fine. Writing an equivalent program in Coq, however, and we run into
trouble. Coq requires a proof of termination for each defined function. In the case of Coq, if this
is not provided the totality checker will throw an error. Furthermore, the proof can be found
automatically through Program Fixpoint in some instances, otherwise the prover will help the
user to prove the termination obligation using a strictly decreasing measure. Idris2, on the other
hand, does not require termination by default, and will readily accept the above program unless the
flag --total is passed to the interpreter. Each function can also go under totality checking with
:total {function}. By not forcing termination, Idris2 users can sacrifice correctness to write
functions where termination would not be desirable, such as the main loop of a web server. This is
a clear benefit over Coq, which would require non-terminating code to be written in the target
extraction language.

3.4 Community/Library Support
Community support for a theorem prover is important, as it is the community that develops many
of the systems’ libraries and help new users get up to speed with the system. As the exact size of
a community is difficult to ascertain and are spread across many online spaces, we use research
mentions according to the ACM digital library5 and the number of GitHub contributors as a proxy.
Since Idris2 is a relatively new system, “Idris" was searched instead. Using “Idris2" as a keyword
results in 3 papers.
We summarize these findings in Table 1 below. Coq has the clear advantage in terms of both

GitHub contributors and amount of related research, with the amount of related research for Idris2
being significantly smaller. This is unsurprising, considering Coq has well over thirty years of
continuous use and development behind it. The number of GitHub contributors for Coq, nearly six
times more than Idris2, further highlights its sizable community.

Table 1. Dedicated communities and their sizes as at October 13, 2023

Prover Github Contributors Related Research count

Coq 230 2345
Idris2 40 439 (3)

In order to take advantage of the community, a theorem prover needs substantive, easy-to-
use libraries. Coq’s official package index formalizes a myriad of mathematics for use by other
projects, easily accessible through OPAM [8]. Idris2 has a package manager in development [7]
and a canonical list of current libraries on their Github page, but this does not yet match Coq in
expansiveness or ease of use. This issue will lessen with time.

5dl.acm.org

8

dl.acm.org

Theorem Provers: One Size Fits All? COMP2560 ’23, November 01, 2023, Canberra, ACT

4 FUTUREWORK
There are a number of potential avenues for future investigation. First, expanding the methodology
of this paper to other theorem provers such as Isabelle, Lean or HOL4 would help to build a more
comprehensive survey of the current theorem-proving landscape. This would build directly upon
this paper’s dual contributions, both expanding information for users to make an informed choice
of system and highlighting features that developers might find useful in maintaining their current
system. Second, we propose an in-depth comparison of what is achievable in terms of program
performance once proofs are compiled. This could be further extended to compare the specific
mechanisms behind each theorem prover’s compiler. Motivated by our initial benchmarks of code
generated by Coq extraction, we finally suggest investigating optimization methods to prepare
Coq programs for extraction while maintaining correctness. Reducing the performance penalty of
verified code would be a significant contribution because it makes the adoption of formal methods
more palatable to industry, which in turn would improve safety in critical systems.

5 CONCLUSION
In conclusion, we have shown that Coq and Idris2 each have their own distinguishing features that
makes them more suited towards specific proof styles. We provide a summary in Table 2.

Table 2. Overall comparison between the theorem provers

Factor Coq Idris2

Installation
Difficulty

Simple - binary + source available Linux: easy, Windows: much harder

Maintainability Strong type checking with some
inferencing ability, offers search
capabilities

Strong type checking allows safer
incremental changes with assist from
holes

Interactiveness
with prover

Tactic-based manipulation with
option for proof-term manipulation

Proof-term manipulation with many
features to assist a user from adding
clauses, case splitting to proof search-
ing

Readability Reads like pen + paper proofs.
Haskell-like syntax

Very readable to those who have
experience with Haskell, but does not
resemble a traditional proof

Ideal scenario Users wanting to take advantage
of significant library + community
support and a more conventional
style of proof

If a user desires executable code and is
familiar with functional programming

ACKNOWLEDGMENTS
To Dirk Pattinson, our supervisor, for your time and energy in helping us succeed. We additionally
thank Donovan Crichton for sharing their expertise in Idris2.

9

COMP2560 ’23, November 01, 2023, Canberra, ACT Oates, Yun and Gurusinghe

REFERENCES
[1] Andrew W. Appel. 2023. Verified Functional Algorithms. Software Foundations, Vol. 3. Electronic textbook. Version

1.5.4, http://softwarefoundations.cis.upenn.edu.
[2] Edwin Brady. 2011. IDRIS —: systems programming meets full dependent types. In PLPV ’11: Proceedings of the 5th

ACM workshop on Programming languages meets program verification. 43–54. https://doi.org/10.1145/1929529.1929536
[3] Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice. arXiv:2104.00480 [cs.PL]
[4] Ana de Almeida Borges, Yves Bertot, Nathan Cassee, Jean-Rémy Falleri-Vialard, Jim Fehrle, Emilio Jesús Gallego Arias,

Jerome Hugues, Barry Jay, Erik Martin-Dorel, Karl Palmskog, Alexander Serebrenik, Matthieu Sozeau, Enrico Tassi,
and Théo Zimmermann. 2022. Coq Community Survey 2022 Results. https://coq.discourse.group/t/coq-community-
survey-2022-results-part-i/1730

[5] Johannes Emerich. 2016. How are programs found? speculating about language ergonomics with Curry-Howard.
https://doi.org/10.1145/2986012.2986030

[6] Georges Gonthier. 2008. Formal Proof—The Four- Color Theorem. https://api.semanticscholar.org/CorpusID:12620754
[7] Stefan Hoek. 2023. https://github.com/stefan-hoeck/idris2-pack
[8] INRIA-Rocquencourt. 2023. The Coq Proof Assistant. Retrieved August 26, 2023 from https://coq.inria.fr
[9] Line Jakubiec, Solange Coupet-Grimal, and Paul Curzon. 1997. A comparative study of Coq and HOL. In International

Conference on Theorem Proving in Higher Order Logics: B-Track, Elsa L. Gunter and Amy Felty (Eds.). 63–78.
[10] Alex Kontorovich. 2022. Foreword to: Special Issue on Interactive Theorem Provers. Experimental Mathematics 31, 2

(2022), 347–348. https://doi.org/10.1080/10586458.2022.2088982
[11] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (jul 2009), 107–115. https:

//doi.org/10.1145/1538788.1538814
[12] Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and Theory of Algorithms, Arnold Beckmann, Costas

Dimitracopoulos, and Benedikt Löwe (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 359–369.
[13] M. Saqib Nawaz, Moin Malik, Yi Li, Meng Sun, and M. Ikram Ullah Lali. 2019. A Survey on Theorem Provers in Formal

Methods. arXiv:1912.03028 [cs.SE]
[14] B Sitnikovski. 2023. Introduction to Dependent Types with Idris. Apress, Berkeley, CA. 31–50 pages.
[15] The Idris Community. 2020. Idris Documentation. https://docs.idris-lang.org/en/latest/reference/
[16] Freek Wiedijk. 2003. Comparing Mathematical Provers. In Mathematical Knowledge Management, Andrea Asperti,

Bruno Buchberger, and James H. Davenport (Eds.). Lecture Notes in Computer Science, Vol. 2. Springer-Verlag, London,
188–202. https://doi.org/10.1007/3-540-36469-2

[17] Freek Wiedijk (Ed.). 2006. The Seventeen Provers of the World. Springer Berlin Heidelberg. https://doi.org/10.1007/
11542384

[18] Artem Yushkovskiy. 2018. Comparison of Two Theorem Provers: Isabelle/HOL and Coq. arXiv:1808.09701 [cs.LO]
[19] Vincent Zammit. 1997. A comparative study of Coq and HOL. In Theorem Proving in Higher Order Logics, Elsa L. Gunter

and Amy Felty (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 323–337.

Received 22 September 2023; revised 3 November 2023

10

https://doi.org/10.1145/1929529.1929536
https://arxiv.org/abs/2104.00480
https://coq.discourse.group/t/coq-community-survey-2022-results-part-i/1730
https://coq.discourse.group/t/coq-community-survey-2022-results-part-i/1730
https://doi.org/10.1145/2986012.2986030
https://api.semanticscholar.org/CorpusID:12620754
https://github.com/stefan-hoeck/idris2-pack
https://coq.inria.fr
https://doi.org/10.1080/10586458.2022.2088982
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814
https://arxiv.org/abs/1912.03028
https://docs.idris-lang.org/en/latest/reference/
https://doi.org/10.1007/3-540-36469-2
https://doi.org/10.1007/11542384
https://doi.org/10.1007/11542384
https://arxiv.org/abs/1808.09701

	Abstract
	1 Introduction
	2 Background
	2.1 The provers
	2.2 Related work

	3 Comparing the provers
	3.1 Installing the provers
	3.2 Proof writing
	3.3 Running programs
	3.4 Community/Library Support

	4 Future work
	5 Conclusion
	Acknowledgments
	References

