
Tactics:
Holes: 

[1] Oskar Abrahamsson. 2020. Verified proof checking for higher-order logic.
[2] Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and
implementation.
Journal of Functional Programming 23, 5 (2013), 552–593. https://doi.org/10.1017/S095679681300018X
[3] Edwin Brady. 2021. Idris 2: Quantitative Type Theory in Practice. arXiv:2104.00480 [cs.PL]
[4] CakeML Contributors. 2023. CakeML: A Verified Implementation of ML. https://github.com/CakeML/cakeml
[5] HOL4 Contributors. 2002. HOL theorem-proving system Kananaskis 1.
https://sourceforge.net/projects/hol/files/hol/
kananaskis-1/
[6] HOL4 Contributors. 2021. Kananaskis-14. https://github.com/HOL-Theorem-
Prover/HOL/releases/tag/kananaskis-14
[7] HOL4 Contributors. 2023. "HOL mode" for Vim. https://github.com/HOL-Theorem-
Prover/HOL/blob/master/tools/vim/README.md
[8] Johannes Emerich. 2016. How are programs found? speculating about language ergonomics with Curry-Howard.
https://doi.org/10.1145/2986012.2986030
[9] Georges Gonthier. 2008. Formal Proof—The Four- Color Theorem.
https://api.semanticscholar.org/CorpusID:12620754
[10] Stefan Hoek. 2023. https://github.com/stefan-hoeck/idris2-pack
[11] INRIA-Rocquencourt. 2023. The Coq Proof Assistant. Retrieved August 26, 2023 from https://coq.inria.fr
[12] Line Jakubiec, Solange Coupet-Grimal, and Paul Curzon. 1997. A comparative study of Coq and HOL. In
International
Conference on Theorem Proving in Higher Order Logics: B-Track, Elsa L. Gunter and Amy Felty (Eds.). 63–78.
[13] Alex Kontorovich. 2022. Foreword to: Special Issue on Interactive Theorem Provers. Experimental Mathematics
31, 2 (2022), 347–348. https://doi.org/10.1080/10586458.2022.2088982
[14] Xavier Leroy. 2009. Formal Verification of a Realistic Compiler. Commun. ACM 52, 7 (jul 2009), 107–115.
https://doi.org/10.1145/1538788.1538814
[15] Pierre Letouzey. 2008. Extraction in Coq: An Overview. In Logic and Theory of Algorithms, Arnold Beckmann,
Costas Dimitracopoulos, and Benedikt Löwe (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 359–369.
[16] M. Saqib Nawaz, Moin Malik, Yi Li, Meng Sun, and M. Ikram Ullah Lali. 2019. A Survey on Theorem Provers in
Formal Methods. arXiv:1912.03028 [cs.SE]
[17] B Sitnikovski. 2023. Introduction to Dependent Types with Idris. Apress, Berkeley, CA. 31–50 pages.
[18] Konrad Slind and Michael Norrish. 2008. A Brief Overview of HOL4. In Theorem Proving in Higher Order Logics.
[19] Freek Wiedijk. 2003. Comparing Mathematical Provers. In Mathematical Knowledge Management, Andrea
Asperti,
Bruno Buchberger, and James H. Davenport (Eds.). Lecture Notes in Computer Science, Vol. 2. Springer-Verlag,
London, 188–202. https://doi.org/10.1007/3-540-36469-2
[20] Freek Wiedijk (Ed.). 2006. The Seventeen Provers of the World. Springer Berlin Heidelberg.
https://doi.org/10.1007/
11542384
[21] Artem Yushkovskiy. 2018. Comparison of Two Theorem Provers: Isabelle/HOL and Coq. arXiv:1808.09701
[cs.LO]
[22] Vincent Zammit. 1997. A comparative study of Coq and HOL. In Theorem Proving in Higher Order Logics, Elsa L.
Gunter and Amy Felty (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 323–337.

References

Prover
Installation
Difficulty

Github
Contributors

Related
Research Count

Coq
Simple with binary

and source
230 2345

HOL4
Build from source

only
65

166 
(2207 for “HOL”)

Idris2

Build from source
only with

workarounds
required for
Windows.

40
19

(439 for “idris”)

Examination of the impact of proof-term vs
tactic-based proving on user efficiency

Comparison between more proof systems,
such as Isabelle or Lean

Investigation of what is achievable in terms
of program performance once proofs are
compiled

future work

Harrison Oates, Hyeonggeun Yun, Nikhila Gurusinghe

Methodology Terminologies

Interactive theorem provers (ITPs) help humans
to formalize complex mathematics and prove
the correctness of programs, potentially
preventing incidents like:

Air France Flight 447 (228 deaths)
Therac 25 (several deaths)
2009 Washington Metro Collision (9 deaths,
80 severe injuries)

Users interact with ITPs in different ways
depending on how they have been designed.
We compare three popular systems, Coq, HOL4
and Idris2.

Why Compare theorem provers?

As a benchmark to compare the experience,
we showed the correctness of
polymorphic Insertion Sort in each prover.

Following aspects were compared in detail:
Installation of provers
Proof writing

Defining functions/theorems
Interacting with the engine
Maintainability and recovery

Running programs
Community/Library support

Tactics: in Coq & HOL4, tactics are
statements that specify how to manipulate
the proof state to eventually reach a
complete proof by decomposing the proof
goal into a set of subgoals.
Holes: in Idris2, holes allow for incomplete
programs to compile so users can work on
other parts of the program. Analogous to
undefined in Haskell, or Admitted in Coq.
REPL: Read-Eval-Print loop. Interactive
environment that takes single user inputs,
executes them and returns the result. A
program written in REPL can be executed
piecewise.

THEOrem provers: one size fits all?
A story about Interactive Theorem Provers and how their design impacts the ability to write
verified programs efficiently for typical users.

Community comparison

Defining Functions & Theorems Interacting with the engine Maintainability & Recovery

Coq: Functions and proofs of their properties
are usually done separately. A clear
correspondence can be seen between the
Haskell and Coq functions. 

HOL4: Like Coq, functions and proofs of their
properties are done separately. As HOL4 uses
Standard Meta Language (SML), the syntax is
familiar to Haskell users. Unicode characters
such as ∀can be used directly in proofs — a
feature Coq and Idris do not have.

Idris2: Functions, proofs and theorems are
equivalent. The theorems are said to be proved
if their corresponding function compiles without
any hole. Consequently, functions and proofs
cannot be written separately. Syntax-wise, very
similar to Haskell.

Coq: tactic-based. Each step is checked by the
verified kernel as it is completed, throwing error
if it is an invalid application. Coq also allows for
direct manipulation of proof terms if the user
desires, like Idris2.

HOL4: tactic-based, similar to Coq. Tactics
manipulate proof state in SML’s REPL, and are
checked by the kernel for correctness in a
similar manner to Coq.

Idris2: Unlike tactic-based Idris1, Idris2 takes
much simpler approach, elaborating syntax
directly into the core representation. This results
in significant performance improvement.

Coq & HOL4: Due to the step-by-step nature
of tactics, it is easy to jump to an earlier proof
state. The interactive aspects of the provers
also contribute to the ease of maintainability.

Idris2: Similar to the other two systems, the
notion of helper functions (lemmas) and
interactive features (case-split, add-missing)
ensure good maintainability and recovery.

Search: All three systems offer proof
searches, being Search in the Coq IDE,
DB.match in HOL4 and ps in Idris2.

Conclusion

Coq is good for users wanting to take advantage
of a large community and more conventional
proof style, while Idris2 is great for functional
programmers desiring executable code. HOL4
offers a nice alternative to Coq for people
desiring a different logical foundation.


