Makespan Investigations of Sequential, Parallel, PO, and POCL Plans

Harrison Oates, Pascal Bercher

School of Computing,
The Australian National University, Canberra, Australia
harrison.oates @anu.edu.au, pascal.bercher @anu.edu.au

Abstract

Modern planning systems utilize various plan representations
— sequential, parallel, partially ordered (PO), and partial-
order causal link (POCL) — each with different models
for concurrency. These formalisms are often implicitly as-
sumed to have the same base properties, particularly regard-
ing makespan. We challenge this assumption, proving the re-
lationship between them is fundamentally asymmetric. Our
analysis shows conversions from plans with rigid concur-
rency layers (sequential, parallel) to those with flexible partial
orders (PO, POCL) can preserve makespan. However, the re-
verse generally fails; the flexible orderings in PO/POCL plans
can yield shorter makespans for solutions that cannot be rep-
resented in parallel plans without serialization. We prove that
finding an optimal parallel representation for a given POCL
plan is NP—complete, resolving a key question about their
practical interchangeability. We also provide tight complex-
ity bounds for makespan-bounded plan existence. Notably,
our results disprove a claim in the literature that planning
graph-based planners maximize concurrency by minimizing
the critical path in derived PO plans.

Introduction

Classical planning employs a variety of plan representa-
tions — sequential, parallel, partial-order (PO) and partial-
order causal link (POCL) — each offering distinct trade-
offs in expressivity, the computational cost of plan gener-
ation, and their ability to model concurrent execution. These
formalisms remain central to diverse areas of contemporary
planning, including SAT-based methods that leverage paral-
lel structures (Rintanen 2012), hierarchical planners that di-
rectly encode POCL plans (Bercher, Lin, and Alford 2022;
Bit-Monnot 2023; Firsov, Fiorino, and Pellier 2023; Bit-
Monnot et al. 2020) or generate parallel plans (Lotem, Nau,
and Hendler 1999; Cavrel, Pellier, and Fiorino 2023), as
well as plan optimization techniques (Bercher, Haslum, and
Muise 2024). When actions can be executed concurrently,
makespan, the minimum time required to execute a plan un-
der parallelism, emerges as a useful performance metric.
Despite their structural differences, a persistent and often
implicit assumption seems to be that these representations
are interchangeable. This view suggests that a makespan-
minimal plan in one formalism is optimal across all.

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Prop. 4
NP-complete~
(Thm. 5) S.e.

Figure 1: Makespan convertibility. Solid green arrows indi-
cate makespan can always be preserved. Dashed red arrows
indicate makespan is not generally preserved.

For instance, Cavrel, Pellier, and Fiorino (2023) find
makespan-minimal solutions in a hierarchical setting using
parallel plan structures. In their future work, they correctly
identify partial-order plans as a “stronger way to represent
concurrency,” but frame this strength in qualitative terms like
being “more resilient and flexible,” leaving the potential for
quantitative improvement — achieving a shorter makespan —
unaddressed. This omission suggests a default assumption
that both approaches achieve the same optimal makespan.
Similarly, CPT (Vidal and Geffner 2006) claims makespan
optimality for temporal POCL planning, but this optimality
is defined only over POCL plans encoded as parallel plans,
not over standard POCL structures. This again may reflect
an implicit assumption that POCL and parallel plan repre-
sentations are interchangeable with respect to makespan.

This issue escalates to flawed foundational claims in
other work. In an analysis of loosely-coupled planning and
scheduling using PO plans, Pecora, Rasconi, and Cesta
(2004) claim in their Theorem 1 that planning graph (PG)
planners like Graphplan (Blum and Furst 1997), which nat-
urally produce parallel plans, ‘maximize concurrency with
respect to the causal model of the problem’ by minimiz-
ing the critical path of the resulting PO plan. We prove
this theorem is incorrect, as a PO plan can achieve strictly
shorter makespans than any valid parallel plan for the same

problem. One immediate consequence is that heuristics that
are admissible for makespan-optimal parallel planning, such
as those of Haslum and Geffner (2000), are inadmissible
for PO/POCL search (Bercher, Geier, and Biundo 2013;
Sapena, Onaindia, and Torrefio 2015) as their cost estimates
derived from PGs are no longer guaranteed lower bounds.
This finding is particularly significant as it directly chal-
lenges the makespan-optimality claims of influential plan-
ners that rely on such cost estimations, such as CPT.

This paper resolves these foundational issues in the lit-
erature by systematically investigating the makespan rela-
tionships between these four key plan types. Our contribu-
tions are twofold. First, we prove a foundational asymme-
try in makespan-preserving convertibility along a concep-
tual hierarchy from more rigid to more flexible representa-
tions. While moving ‘up’ this hierarchy (e.g., from parallel
to PO plans) can preserve makespan, the reverse generally
fails. The flexible orderings in PO/POCL plans can encode
solutions with shorter makespans that cannot be represented
in parallel plans without serialization. We prove that con-
verting a POCL plan to a makespan-minimal parallel plan
is NP—complete, highlighting a key barrier to efficient inter-
change between plan representations; we also provide non-
trivial upper bounds on makespan. These relationships are
summarised in Figure 1.

Second, we establish the first comprehensive complex-
ity bounds for the makespan-bounded plan existence prob-
lem for non-sequential plans. We show the problem is
PSPACE-complete when the makespan bound is encoded
in binary, but drops to NP—complete for a unary encoding.
This distinction reflects the common search strategy in prac-
tical systems like SAT-based planners, where the makespan
bound increases incrementally until a solution is found.
Together, these results refute the assumption of makespan
equivalence and provide a formal basis for understanding
the computational trade-offs between plan representations.

Classical Planning Framework

A classical planning problem is a tuple (F,.A,Z,G) where
F is a finite set of fluents, a state is any s € 27,
and A C (27)% is a finite set of actions. An action
a = (pre(a),add(a),del(a)) is a tuple with preconditions
pre(a) C F, add effects add(a) C F, and delete effects
del(a) C F.TI € 27 is the initial state, and G C F is the
goal description. An action a is applicable in a state s if and
only if pre(a) C s. If a is applicable in s, the state transi-
tion function y : A x 27 — 27 returns the successor state
v(a,s) = (s \ del(a)) Uadd(a).

A plan is a structure of actions intended to transform the
initial state 7 into a state satisfying G. We assume all actions
take unit duration to complete. Informally, the makespan of
a plan is the minimum number of time steps required to ex-
ecute the plan, allowing actions to be performed in paral-
lel whenever possible according to dependencies. A precise
definition depends on the considered plan representation.

Sequential Plans

An action sequence a = ai,as,...,a, is applicable in
a state s if and only if there exists a sequence of states

50,81, -..,5, such that for all 1 < i < n, it holds that a; is
applicable in state s;_; and generates state s; = y(a;, $;—1)-
Sy, 1s called the state generated by a.

Definition 1 (Sequential Plan). An action sequence @ is
called a sequential plan to a classical planning problem
(F,A,Z,G) if and only if it is applicable to T and gener-
ates a goal state s 2O G.

The makespan of a sequential plan @ = ag, ..., a, under
the unit duration assumption is simply its length, n.

Parallel Plans

Parallel plans, as introduced in the Graphplan algorithm
(Blum and Furst 1997) are structured as a sequence of ac-
tion sets, often called timesteps. Actions within the same
timestep are intended to be executed concurrently. For an
action set A to be applicable in a state s, two conditions
must be met. The first is that all preconditions of all actions
in A must hold in s: | J,. 4 pre(a) C s. The second crite-
rion is that all pairs of distinct actions a;,a; € A must be
non-interfering (Blum and Furst 1997). This holds if no ac-
tion deletes another’s preconditions (pre(a;) Ndel(a;) = 0)
and no action deletes another’s positive effects (add(a;) N
del(aj) = 0). The first condition for non-interference guar-
antees that all actions are individually applicable in the cur-
rent state, regardless of their execution order. The second
ensures that the successor state is unique and independent of
the order in which actions are applied.

Assuming a non-interfering action set A, the state transi-
tion function -y is generalised to apply the combined effects:

(A, 5) = (s \ Upea del(a))U(U,e 4 add(a)). Analogous
to the serial case, a sequence of action sets A= Ay, A,
is applicable in state s if and only if there exists a sequence
of states s, . . ., S, such that each A; is applicable in s;_1
and generates state s; = Y(A;, si_1). s, is called the state

generated by A.

Definition 2 (Parallel Plan). An action set sequence A
is called a parallel plan to a classical planning problem
(F,A,Z,G) if and only if it is applicable to T and gener-
ates a goal state s 2O G.

The makespan of a parallel plan A = A,..., A,, is m.

Partial Order Plans

A partial partial-order (PO) plan P is a tuple (PS, <) con-
sisting of a finite set of plan steps P.S, with each step
(I,a) € PS consisting of an action a and a unique label
l. This labelling is required in order to differentiate between
multiple occurrences of an action in the same plan. As we
did for actions, we use pre(ps), add(ps), and del(ps) to re-
fer to the preconditions and effects of a plan step ps’s action.
< C PS x PS is a strict partial order over the plan steps.

Definition 3 (PO Plan). A partial PO plan P = (PS, <)
is called a PO plan to a classical planning problem
(F,A,Z,G) if and only if every linearization is executable
in T and generates a goal state s O G.

The makespan for PO plans represents the minimum time
required to execute the plan, assuming steps can run in par-
allel whenever allowed by the ordering constraints.

e
e S

Figure 2: A POCL plan where the order between a; and ag
is unconstrained. Arrows depict causal links and implied or-
dering constraints are not shown.

Definition 4 (Parallel Execution (Bercher and Olz 2020)).
Let P = (PS,<) be a PO plan. A parallel execution
of P is a function r : PS — N U {0} denoting re-
lease times for the plan steps in PS satisfying for all
a,be PS:r(a)+1<r(b)ifa=<b.

The constraint 7(a) + 1 < r(b) ensures that if step a
precedes step b, then b cannot start until at least the time
step after a starts. The total duration of a parallel execu-
tion r is determined by the completion time of the last step:
Duration(r) = max,secpg r(ps) + 1.

Definition 5 (Makespan). The makespan of a PO plan P is
the minimum possible duration over all valid parallel exe-
cutions of P: min, {maxpscps r(ps) + 1}.

The minimization in this definition is necessary because a
single PO plan can admit multiple valid parallel executions
whenever actions are unordered relative to one another. Con-
ceptually, this minimum duration is equivalent to the plan’s
critical path length (its longest chain of dependent steps).

Example 1. The plan in Figure 2 illustrates this with two
unordered actions, a1 and as. The lack of an ordering con-
straint permits multiple executions: a sequential one (in ei-
ther order) or a concurrent one. Since makespan is the min-
imum possible duration, the plan’s makespan is just 1.

Partial Order Causal Link Plans

A partial partial-order causal link (POCL) plan P is a tuple
(PS,<,CL) with PS and < defined as in PO plans, and
CL C PS x F x PS is afinite set of causal links.

To encode the initial and goal states of a classical prob-
lem within a POCL plan, we must introduce two special
plan steps: init and goal. The init step precedes all other
steps in the partial ordering, while the goal step follows
all other steps, establishing the boundaries of the plan ex-
ecution. These special steps are associated with correspond-
ing actions that have specific properties. The init action has
no preconditions (pre(init) = () and no delete effects
(del(init) = (). Its add effects correspond exactly to the
initial state (add(init) = Z). The goal action’s precondi-
tions represent the goal conditions (pre(goal) = G), while
having no effects (add(goal) = 0 and del(goal) = 0).

A causal link (ps,f,ps’) € CL indicates that
f € add(ps) N pre(ps’): that is, the precondition f of ps’
is to be fulfilled by an effect of ps. To ease definitions, we
require that any causal link (ps, f,ps’) € CL implies an
ordering constraint (ps, ps’) € <. Then, the definitions for
parallel execution and makespan in the context of PO plans

apply directly to POCL plans. We call f protected by that
link, as f will not be deleted between these steps in any
derived solution. A plan step ps” threatens a causal link
(ps, f,ps') iff f € del(ps”) and the transitive closure of
< U{(ps,ps"), (ps”,ps’)} is a strict partial order. A partial
plan satisfying such a condition raises a causal threat.

Although peripheral to our primary focus, it is nonethe-
less useful to briefly examine how causal threats are re-
solved in POCL plans through promotion or demotion of
plan steps (Younes and Simmons 2003). Suppose a plan step
ps” threatens a causal link (ps, f, ps’). Promotion enforces
an ordering constraint ps’ < ps” to ensure that ps” occurs
after the consumer of the link, preventing ps” from deleting
f before ps’ can use it. Similarly, demotion enforces an or-
dering constraint ps” < ps to ensure that ps’’ occurs before
the producer ps, so ps” does not interfere with the causal
link!. We can now define POCL plans.

Definition 6 (POCL plan). A partial POCL plan P is called
a POCL plan to a classical planning problem if and only if
every precondition of its plan steps is protected by a causal
link and there are no causal threats.

Therefore, a POCL plan is essentially a PO plan where the
causal structure for plan validity is made explicit, ensuring
that all precondition fulfilments are deliberate and protected.

With the framework in place, we now examine how
makespan is preserved across different plan representations.

Makespan Relationships Among Plan
Representations

In this section we investigate the time complexity of con-
verting between plan representations. Along the hierarchy
Sequential — Parallel — PO — POCL, conversion upward
is makespan-preserving, but the converse does not hold.

We begin our investigations with conversions from paral-
lel plans to PO and POCL plans.

Theorem 1. Let A = Ay,..., Ay, be a parallel plan of n
actions with makespan k. Then, there exists a PO plan P
with makespan k that can be computed from A by adding

2.5k 14,12
exactly Lp P HLC Zfll d

ordering constraints.

Proof. A parallel plan can be converted into a PO plan
by labelling each action as a step and adding ordering
constraints between layers: for all ¢ < j, constrain each
a; € A; to precede each b € A;. This introduces exactly

2 k 2
Z1§i<j§k |Ail|A;] = % constraints. O

Bercher and Olz (2020) showed that obtaining a POCL
plan from a PO plan with the same makespan is always pos-
sible if additional ordering constraints are able to be added.

'As explained by Weld (1994) in footnote 8, ‘the names stem
from the fact that demotion moves the threat lower in the temporal
ordering, but promotion moves it higher.” We follow this original
terminology. Some authors instead use the term promotion where
we use demotion, and vice—versa (Bercher and Olz 2020; Olz and
Bercher 2019; Bercher, Geier, and Biundo 2013). This stems from
a perspective where ‘the earlier, the better’.

Proposition 1 ((Bercher and Olz, 2020, Thm. 1)). Let
P = (PS, <) be a PO plan with makespan k. Then there
exists a POCL plan P’ = (PS,<',CL) with <" 2 < that
also has a makespan of k. Furthermore, P’ can be computed
in polynomial time.

However, in some special cases, no additional ordering
constraints are needed during the conversion. Interestingly,
the PO plan constructed in the proof of Theorem 1 is threat-
free, so no additional ordering constraints need to be added
to yield a POCL plan. We prove this in the following lemma
by adapting Algorithm 2 of Bercher and Olz (2020).

Lemma 1. Ler P = (PS,<) be a PO plan obtained
by layering a valid parallel plan over k timesteps as in
the proof of Theorem 1 (so each step s sits in a unique
layer ((s), and ((s) < £(t) = s =< t). Define
a POCL plan P’ = (PS,=<,CL) by, for every step c
and every precondition f € pre(c), choosing a producer
p=max{l(q) | ¢ < ¢, f € add(q)} and adding the single
causal link (p, f,c) to CL. Then for every (p, f,c) € CL
and every other step t € PS with f € del(t), we have ei-
ther t < p or c < t, so there are no causal threats and no
additional ordering constraints are required.

Proof. We show that threatening plan steps are not possible.
Suppose by way of contradiction there were a step ¢ with
f € del(t) and £(p) < £(t) < £(c). Then, in the origi-
nal parallel plan, layer ¢(p) would have produced f, layer
£(t) would have deleted it, and yet layer ¢(c) would still re-
quire it. This contradicts plan validity, hence no such ¢ ex-
ists. Therefore, any step ¢ with f € del(¢) must lie either in
alayer < {(p) (sot < p) orin a layer > £(c) (so ¢ < t).
Therefore, no causal threats exist, and by layering we al-
ready have all required ordering constraints. O

Therefore, we can construct a POCL plan from a parallel
plan with no ordering constraints beyond what was required
for the PO plan. Based on this observation, we obtain:

Corollary 1. Let A = Ay, ..., Ay, be a parallel plan of n
actions with makespan k. Then there exists a POCL plan P
that also has a makespan of k. Computing P requires exactly

AillAy] = =X A qddivional orderi
Zl§i<]_'§k‘ illA;] = 5 additional ordering
constraints.

We can now consider transformations going in the op-
posite direction, from ‘higher’ plans to ‘lower’ ones. Triv-
ially, every POCL plan induces a PO plan with the same
makespan, as any causal link (ps, f, ps’) implies an order-
ing constraint ps < ps’.

Proposition 2. Let P = (PS,<,CL) be a POCL plan
with makespan k. Then, P’ = (PS, <) is a PO plan with
makespan k.

A subtle issue arises in POCL-to-parallel conversion:
POCL plan steps are unique labeled objects (I, a), so mul-
tiple steps with the same action a but different labels can
execute simultaneously. However, parallel plans use sets of
actions, which cannot contain duplicates.

Example 2 (Counting 1 to N). Consider G = {g1,...,gn},
Z =0, and action ag = (0,{g1,-..,9n},0). A valid POCL

plan can contain n distinct steps (11, ag), .. ., (1, ag), each
fulfilling a different goal, all executing in parallel (Figure 3).

“ E

Figure 3: A POCL plan with four identical actions executing
at once.

Pumu

tau:.m
f//// XQ
W=

BN =

i

%wNH

Naively serializing such steps destroys parallelism and in-
flates makespan. Instead, we observe that concurrent dupli-
cate actions are functionally redundant.

Proposition 3 (Redundant Concurrent Steps). Let P =
(PS,=<,CL) be a POCL plan with parallel execution r. If
Saup € PS contains multiple steps {(l1,a), (l2,a),...}
with the same release time in r, then we can replace all
steps in S gy with a single representative step ps* = (I*, a),
rerouting all outgoing causal links to ps*, yielding a valid
POCL plan P’ with the same parallel execution.

Proof. Since all steps in Sg,;, execute concurrently with
identical preconditions and effects, the representative ps*
satisfies the same preconditions, provides the same causal
support (by rerouting links), and creates no new threats.
Thus P’ is valid. O

Thus, we can assume each action appears at most once per
release time.

We now consider converting POCL plans to parallel
plans. A natural approach is to group POCL plan steps into
timesteps based on their optimal release times in a parallel
execution. However, this direct conversion can fail to pre-
serve makespan. We provide a counterexample POCL plan
in Figure 2. While a; and ay are unordered and thus share
the same optimal release time, they have inconsistent ef-
fects. a1 adds p, while ay deletes p. This violates the non-
interference criterion for parallel plans, and so a; and ao
cannot execute in the same action set. Therefore, a; and as
must be serialized in any valid parallel plan, even though the
POCL structure allowed them to be concurrent. This leads
to the following observation:

Proposition 4. There exist POCL plans which cannot be
converted to a parallel plan with the same makespan.

This result refutes Theorem 1 of Pecora, Rasconi, and
Cesta (2004), which claims that PG-based planners ‘max-
imize concurrency’ for PO scheduling. Because parallel
plans cannot represent plans like those in Figure 2 while
maintaining makespan, PG-based planners do not guaran-
tee makespan optimality for the general class of partially or-
dered plans. This has important implications for deployment

of state-based heuristics for PO/POCL planning (Bercher,
Geier, and Biundo 2013; Sapena, Onaindia, and Torrefio
2015).

For a heuristic to be useful in guaranteeing optimality,
it must be admissible. A heuristic is admissible if it does
not overestimate the cost of achieving the goal. Consider
the h;* family of admissible heuristics for parallel planning

(Haslum and Geffner 2000). We first observe that h; remains
admissible for POCL planning. This heuristic computes the
cost of achieving the most expensive individual goal flu-
ent, assuming parallel execution. Since any valid plan must
achieve a goal fluent, the total makespan must be at least the
time required to achieve the most difficult individual fluent.
Thus, hll, provides a valid lower bound.

However, for m > 2, the heuristic accounts for interac-
tions between subsets of up to m fluents using mutual exclu-
sion reasoning based on non-interference constraints. In par-
ticular, hf) corresponds to the Graphplan heuristic i, which
identifies the earliest planning-graph layer at which all goal
fluents in the set appear together without any mutual exclu-
sions. In our example from Figure 2, hg({c,d}) = 2, yet
the POCL plan achieves both goals within a single timestep.
Therefore, hf) overestimates the true makespan and is inad-
missible for POCL plans. Since any h;" with m > 2 reduces

to hf, when the goal contains only two fluents, it immediately
follows that all such A} heuristics are also inadmissible for
POCL planning:

Corollary 2. For m > 2, the hy' heuristic is inadmissible
for makespan-optimal PO/POCL planning.

This finding directly impacts how optimality claims for
partial-order planners should be interpreted. A prominent
example is CPT (Vidal and Geftner 2006), which is pre-
sented as a makespan-optimal temporal POCL planner. CPT
simultaneously employs hf) as a heuristic and enforces the
non-interference constraints of parallel planning at each time
point. While this ensures optimality under those parallel-
plan semantics, our results clarify that such semantics re-
strict the search space compared to standard POCL planning.
For example, CPT could not represent the plan in Figure 2,
even if a POCL-admissible heuristic were employed. Conse-
quently, CPT’s optimality guarantee does not extend to the
general class of POCL plans.

Having established that a makespan-preserving conver-
sion is not generally possible, the challenge becomes how
to systematically resolve these conflicts. We propose a gen-
eral procedure, outlined in Algorithm 1, which uses a graph-
colouring technique to ensure all actions within each paral-
lel timestep are non-interfering. The core idea is to maintain
the original layering structure as much as possible, but to
‘stretch out’ any layer where actions would clash if run si-
multaneously. First, group plan steps by their release time
t and build a conflict graph G; whose vertices are those
steps, inserting an edge where two actions have interfering
effects. This isolates each independent time-slice of the orig-
inal POCL schedule. Then, colouring each graph G assigns
each action to a colour-class (i.e, to one parallel layer) such
that no two conflicting actions share a layer. The number
of colours y; determines how many layers are needed for

Algorithm 1: Convert a POCL plan into a parallel plan
Input: POCL plan P = (PS,<,CL) with release-time
schedule r : PS — {0,...,k—1}

Output: Parallel plan (A1,..., A,,)

1: // Step 1: Build and colour conflict graphs

2: foreacht =0tok — 1do

3 S+ {pse€ PS|r(ps) =t}

4: Build conflict graph G; = (S, F:) where
{ps,ps’} € E; iff ps and ps’ interfere

5. Compute proper colouring of G into x; colors
6: Partition S; into colour-classes St(l), cey St(Xt)
7. end for

8: // Step 2: Compute offsets for layering

9: off(0) « 0

10: fort =1tok —1do

1 off(t) « X020 Xy

12: end for

13: // Step 3: Assign each colour-class to a parallel layer
14: foreacht =0tok — 1 do

15: forc=1to x; do

16: Aottty s + S
17: end for
18: end for

19: return (Ay,..., Ay~)

block ¢. Finally, stitch together these layers in increasing or-
der of ¢, using cumulative offsets. This preserves the original
release-time ordering and ensures all causal and interference
constraints are met.

The makespan of the resulting plan is m =), x¢. To
minimize this makespan, Line 5 of Algorithm 1 requires
finding an optimal colouring for each conflict graph G, —
i.e., using the minimum number of colours (the chromatic
number X(Gy)). As graph coloring is NP—complete (Garey,
Johnson, and Stockmeyer 1974), the choice of colouring
procedure for Line 5 dictates the algorithm’s overall com-
plexity. If an optimal colouring algorithm like Lawler’s
(1976) is used, which runs in O(|E;| - |Sy| - 2.445!5¢1) time,
then the overall runtime is dominated by this exponential
step. In the worst case, all n steps execute at t = 0, leading
to the following bound:

Theorem 2. The runtime of Algorithm 1, when using an ex-
act colouring algorithm, is in O (C - n - 2.445™), where C
is the total number of interfering pairs.

In practice, a polynomial-time greedy heuristic (Welsh
and Powell 1967) can be used for Line 5. This makes Al-
gorithm 1 polynomial-time, though the resulting makespan
may not be minimal. We now provide makespan bounds
for the parallel plan constructed by Algorithm 1, depending
on the colouring strategy used. We first establish an upper
bound that holds for any proper colouring.

Theorem 3. Given a POCL plan with makespan k and C
interfering pairs, algorithm 1 using any proper colouring
constructs a parallel plan with makespan at most k + C.

Proof. Suppose the makespan of the computed paral-
lel plan is m. By Brooks’ Theorem (Brooks 1941),
X(G¢) < A(Gt) 4+ 1. Summing this over all k steps yields
m < k+ >, A(Gy). Since the maximum degree A(G)
cannot exceed the number of conflicts | F;| in that time step,
the total makespan is bounded by k+ >, |E;| = k+C. O

If an optimal colouring is used for each G in Algorithm 1,
we can establish a tighter bound.

Theorem 4. Given a POCL plan with makespan k and C
interfering pairs, Algorithm 1 with optimal colouring con-

. . C
structs a parallel plan with makespan in O (k\ /1+ ;)

Proof. For each conflict graph G, there must be at
least one edge between every pair of colour classes, so

X(G)(x(G) — 1) < 2|E|, which gives x(G) < foh Vit 1 ”1;_8‘]2‘.
Thus,m < & +1 Zf;ol \/1 + 8| E;|. By Cauchy-Schwarz,

P VTH8IE] < VEVEFBC = ky/1+ 35S, where

C =", |E¢|. Therefore

k / 8C / C

It is straightforward to see that the makespan depends on
the structure of the conflict graphs G;. In favourable cases,
many steps can be executed in parallel; however, in the worst
case, no parallelism is possible when each G is a clique.

Corollary 3. In the worst case, a valid parallel plan com-
puted by Algorithm 1 may require |PS| layers; that is, the
plan must be executed sequentially.

While we provide one constructive method of finding a
minimal-makespan parallel plan, we now show that the gen-
eral problem of transforming a POCL plan is intractable.

Definition 7. Let POCL-PARALLELISATION be the
language consisting of all tuples (P,k) such that
P = (PS,<,CL) is a POCL plan, k € N is a makespan
bound, and there exists a partition (A1, ..., Ay) of PS,
with m < k, satisfying: (1) for all ps € A;, every ps’ < ps
appears in some A; with j < i; (2) for all ps € A;,i >
r(ps) where r is the unique optimal parallel execution; and
(3) for all ps,ps’ € A;, ps and ps’ are non-interfering.

Theorem 5. POCL-PARALLELISATION is NP-complete.

Proof. Membership: For an instance (P, k), guess a parti-
tion (Ay,...,A,,). Verification can be done in polynomial
time by checking that (1) all actions in P are assigned to ex-
actly one A;, (2) that m < k, (3) that no two actions in any
A; interfere, and (4) that all ordering constraints and release
time constraints are respected.

Hardness: We reduce from GRAPH K-COLOURING
(Karp 1972). Given (G = (V, E), k), we construct an in-
stance (P, k"). The plan P contains a step ps,, for each vertex
v € V. We introduce interference for each edge (u,v) € F
by defining a unique fluent f,, such that ps, adds it and
ps, deletes it. Initially, all other preconditions and effects
are empty, the plan has no ordering constraints, and all steps

have an optimal release time of 0. Finally, we set the target
makespan bound to k' = k. This transformation is poly-
nomial in the size of (G, k). We now show that G is k-
colourable iff (P, k') is in POCL-PARALLELISATION.

= Suppose G is k-colourable. Then there exists a
function ¢ : V' — {1,...,k} such that c(u) # ¢(v) when-
ever (u,v) € E. Define the layers A; = {ps, | c¢(v) = i}.
Since c is a proper colouring, if ps,, ps, € A;, then v and
v have the same colour, implying (u,v) ¢ E. By our con-
struction, this means ps, and ps, do not interfere. All ac-
tions ps, € PS are assigned to one of these k timesteps.
Thus, we have a valid parallel plan with makespan k = &'.

<= Suppose (P, k') € POCL-PARALLELISATION.
Then the partition (Ay, ..., Ax) forms a proper k—colouring
of G, by assigning each vertex v the colour ¢ such that ps,, €
A;. The conflict constraint ensures that no adjacent vertices
share a colour. O

The foregoing analysis has primarily addressed conver-
sions among non-sequential plan types. To provide a com-
plete picture, we now explicitly consider their relationship
with sequential plans. A sequential plan @ = ay, ..., a, has
makespan n, and can be trivially converted into a parallel
plan A = {a;},...,{a,}, where each action occupies its
own timestamp. By Theorem 1 and Proposition 1, PO and
POCL plans can be derived also with a makespan of n. Con-
versely, converting from a non-sequential plan to a sequen-
tial plan generally does not preserve makespan if the original
plan exploited parallelism. See Figure 2 for an example.

Coming back to the makespan relationships between
plans, we have established that makespan-preserving con-
versions ‘upwards’ require the addition of polynomially
many ordering constraints. Unfortunately, conversion down
the hierarchy while preserving makespan is only possible in
the trivial POCL to PO case.

Complexity Results

The most basic decision problem is deciding whether a plan
exists for a given planning problem IT = (F, A, Z, G), with-
out any restrictions on its makespan. As demonstrated in the
previous section, conversion between each plan type can oc-
cur in polynomial time (although without necessarily pre-
serving makespan). Therefore, the existence of one type of
plan implies the existence of all of the others. For sequen-
tial plans, plan existence is PSPACE-complete (Bylander
1994), and so it is straightforward to see the following:

Proposition 5 (Equivalence of Unbounded Plan Existence).
For any given classical planning problem 11 = (F, A, Z, G),
the existence of a sequential, parallel, PO, or POCL plan is
equivalent, and deciding any of them is PSPACE-complete.

Makespan-bounded Plan Existence

The language {(II, k) | II has a plan of makespan < k},
where II is a classical planning problem, defines the
MAKESPAN-BOUNDED PLAN EXISTENCE (MBPE)
problem. We assume a standard encoding function (-)
which maps objects to strings over {0,1}*. We first con-
sider binary-encoded k. MBPE is only interesting for

non-sequential plans, as the sequential case is precisely
length-bounded plan existence, which has already been
shown to be PSPACE-complete (Bylander 1994). We
leverage this result to show:

Theorem 6. MBPE for parallel plans is PSPACE-
complete.

Proof. Membership: Let 11 = (F, A,Z,G). We adapt the
Graphplan procedure (Blum and Furst 1997) to use only
polynomial space. To avoid an exponential blowup from ma-
terializing the full planning graph, we only store two pieces
of information at any time: the current time step ¢ (requiring
O(log k) bits, initialized to 0) and the set .S of true atoms at
the end of each time step ¢ (initialized to 7).
The procedure performs the following steps iteratively.

Check goal: If S D G, accept.
. Check bound: If ¢ > k, halt and reject, as the goal can-
not be achieved in makespan k.
3. Guess actions: Nondeterministically guess a subset of
actions A; C A to execute in time ¢.
4. Verify guess: Check if the guessed set A; is valid:
(a) Preconditions: For each a € Ay, pre(a) C S.
(b) Non-interfering: Check that all pairs a;,a; € A;
are non-interfering.
(c) If either check fails, reject this branch.
5. Update state: if A; is valid:
(a) Compute the effects: Add; = |J,c,, add(a) and
Dely =, ca, del(a).
(b) Update the set of true atoms: S < (S\ Del;)UAdd,.
(c) Increment time step ¢ <— ¢ + 1.
(d) Go back to step 1.

N -

We now analyse the space requirements of the procedure.
We store the current time step ¢ < k, which requires
O(logt) space. Since ¢ is incremented up to k, this is
O(log k) overall. Although k is exponential in |(k)|, log k
is polynomial in |(k)|. Similarly, S is bounded by the num-
ber of ground atoms |F|, so takes O(|F|) space. Verifica-
tion in step 4 and updating the state in step 5 can both
be done in polynomial space and time relative to the input
size. We additionally had to guess at most O(|.4]) actions at
each iteration. The total space required by the procedure is
O(log k + |F| +|A|), which is polynomial in the size of the
input. Therefore, the problem is in NPSPACE. By Savitch’s
Theorem (Savitch 1970), NPSPACE = PSPACE.

Hardness: We reduce from BOUNDED SEQUENTIAL
PLAN EXISTENCE, which is known to be PSPACE-
complete (Bylander 1994). Formally, the language is
BPE = {(II, k) | II has a sequential plan of length < k}.
The core idea is to modify the planning problem II into a
new problem IT' such that any valid parallel solution plan
in II" must effectively execute only one ‘original” action per
time step, forcing the makespan of the parallel plan P’ in IT’
to be equal to the length of the sequential plan P in II.

Let (II,k) be an instance of BPE, where
M= (F,AZG) and k is the length bound. We con-
struct an instance (II',k) of MBPE as follows: let

I = (F,A,T',G"), where F' = F U {odd, even}, T' =
Z U{odd} and G’ = G. For each a = (pre, add, del) € A,
create two new actions a,qq and Geypey, in A’:

aoqq = (pre U{odd}, add U {even}, del U {odd})
Aeven = (pre U {even}, add U {odd}, del U {even})

The makespan bound for IT is the same k as in the sequential
case. This transformation is polynomial in the size of II.

We now show that II has a sequential solution of length
< k iff TI' has a parallel solution of makespan < k.

—> Assume that there exists a sequential plan
a=ai,...,a, for Il with n < k that is applicable to Z and
generates the goal description G. This is trivially a parallel
plan with makespan ¢ < k. ~

<= Assume there exists a parallel plan A = A, ..., A,
for II" with ¢ < k, applicable to Z’ resulting in a super-
set of G’. We claim that each step A} must contain exactly
one action. To prove this, consider any two distinct actions
a;,a’; € A’ proposed for inclusion in the same timestep A’.
There are three cases to check:

1. If £ = (az)odd and y = (ay)odq: Both require odd
as a precondition. However, odd € del((az)oqq)- Thus,
pre((ay)oda) N del((ag)oaa) = {odd} # (. The actions
interfere.

2. If x = (Gz)even and ¥ = (ay)even: Similar to case 1,
both require even, and even € del((az)even), SO they
interfere.

3. f x = (az)oda a0d Y = (Gy)even: Pre((az)odq) includes
odd, and pre((@y)even) includes even. By construction
of actions in A’, any state reachable from Z’ contains ei-
ther odd or even, but never both (as one is deleted when
the other is added). Therefore, (a4)oqq and (ay)even can-
not have their preconditions simultaneously satisfied in
any valid state, so they cannot be co-applicable in A;.

Therefore, for A’ to be a valid non-interfering and co-
applicable set of actions, it must contain at most one action.
Since a plan should make progress, each A;- must contain
exactly one action a; € A'. So, A = {a}},{a5},...,{a}}.
The initial state Z’' contains odd, so a}j must be of the form
(a1)odq- After its execution, the state will contain even, so
a’, must be of the form (a2)eyen, and so on. The turn-taking
fluents odd, even ensure that the “type” of action (odd or
even) alternates correctly.

We can construct a sequential plan @ = a1, aq, ..., a; for
IT by taking a; to be the original action from A from which
a; was derived (i.e., strip off the ,44 OF ¢yern suffix and the
turn-taking fluents from its definition).

* Length: The length of a is t. Since the makespan of A
was t < k, the length bound for a is satisfied.

* Applicability: Let So = Z and S, = Z’. Let S; be the
state after a; in @, and S} be the state after A’ = {a}}
in A. We now show that if a’; is applicable in S, and
F-fluents in S}_; match S;_1, then a; is applicable in
Sj—1. The preconditions of a’; are pre(a;) plus either odd
or even. Since a’; is applicable in S} _;, pre(a;) C Sj_;.

The F-fluents in S%_, (i.e., S;_; N F) are identical to
the fluents in S;_; (the state in II before a;). Thus,
pre(a;) € S;_1, so a; is applicable. The effects on F-
fluents are also preserved.

* Goal: The final state S; of A satisfies G’ = G. Since the
operations on F-fluents in II" mirror those in I, the final
state .S; of a satisfies G.

Therefore, a is a valid sequential plan for IT of length ¢ < k.
Since the reduction is polynomial, and BPE is PSPACE-
complete, MBPE for parallel plans is PSPACE-hard.

In conclusion, the problem is PSPACE—complete. O

While this result in conjunction with Theorem 1 and
Corollary 1 gives us PSPACE-hardness for PO and POCL
plans, Proposition 4 prevents us from claiming membership.
However, PSPACE membership for PO (and thus POCL,
by Proposition 1) plans can be established by adapting the
membership proof of Theorem 6. The core modification re-
stricts non-interference checks to relevant effects only. Let
E = ,c4(add(a) U del(a)) be the set of all effects. The
set of relevant effects R C I is the smallest set containing
all e € G, and closed under: if e € add(a) U del(a) for
some a € A with pre(a) N R # (), then e € R. The key
insight is that conflicts arising from irrelevant effects (ef-
fects not in R) can be safely ignored, as they do not create
causal dependencies that increase makespan. Consequently,
our decision procedure need only enforce non-interference
among effects in R. Since |R| < |F|, computing R requires
only polynomial space. The adapted decision procedure thus
runs in space O(log k + 2| F| + |A]), establishing PSPACE
membership. We therefore obtain the following corollary:

Corollary 4. MBPE is PSPACE-complete for classical
planning problems regardless of whether plans are repre-
sented as parallel plans, PO plans, or POCL plans.

Makespan-bounded Plan Existence with
Unary-encoded Makespan

Our complexity analysis has so far assumed the makespan
bound k is encoded in binary. The preceding PSPACE-
hardness result is a direct consequence of this choice, as it
allows the value of k to be exponential relative to the over-
all input size. It is therefore interesting to determine if this
encoding is the sole source of hardness, or if the problem re-
mains difficult even for polynomially bounded makespans.
We investigate this by analyzing the complexity when k is
encoded in unary. This analysis is also practically motivated,
reflecting the incremental search strategy of systems like
SAT-based planners. It is known that BPE is NP—complete
when £ is encoded in unary (Béckstrom and Jonsson 2011).
We extend this result to MBPE for parallel plans by adapt-
ing the reduction used in the binary setting.

Theorem 7. MBPE for parallel plans is NP-complete if
the makespan bound k is encoded in unary.

Proof. Membership: We refer to the nondeterministic deci-
sion procedure in Theorem 6 for establishing membership
in PSPACE. The algorithm guesses an action set A for each
timestep ¢, verifies its validity, and updates the state. Each

iteration takes time polynomial in the size of the planning
problem II, and there are at most k such iterations. As k is
encoded in unary, we have |(k)| = k, so its value is bounded
by the input size. Specifically the input size is at least |TT|+k.
Therefore, the total runtime of the nondeterministic algo-
rithm is & - poly(|II]), which is polynomial in the total input
size. Therefore the problem is in NP.

Hardness: We reduce from BPE with unary length bound,
which is known to be NP-complete (Bickstrom and Jonsson
2011). Given an instance (II, k), where Il = (F, A,Z,G)
and k is a unary encoded length bound, the problem is to
decide if a sequential plan of length < k exists for II.

We use the same polynomial-time reduction construc-
tion as in the PSPACE-hardness proof of Theorem 6.
This reduction transforms II into a new planning problem
Il = (F, A',T',G") designed to force parallel plans to be
sequential. The makespan bound &’ for IT’ is set equal to k.
If k is given in unary, then k' (when considered as a value)
is also represented by this unary length.

As shown in Theorem 6, II has a sequential solution of
length < k if and only if II' has a parallel solution with
makespan < k' = k. Since BPE with unary length bound
is NP-hard and the reduction is polynomial, MBPE for par-
allel plans with a unary-encoded makespan bound £ is also
NP-hard. Hence, the problem is NP—complete. O

For PO and POCL plans, we obtain NP-hardness from
Theorems 1 and 7, and Corollary 1. NP membership fol-
lows directly by guessing and verifying a POCL plan of at
most k - |A] plan steps. As this plan is polynomial in the
size of the input, both guessing and verification require only
polynomial time. We hence obtain the following corollary:

Corollary 5. MBPE is NP-complete for classical plan-
ning problems when the makespan bound k is encoded in
unary, regardless of whether plans are represented as paral-
lel plans, PO plans, or POCL plans.

Conclusion

This paper proves that common plan representations are
not interchangeable for makespan optimization. We estab-
lish a one-way relationship in their expressive power and
show that the cost of bridging this gap — finding an op-
timal parallel equivalent for a partial-order plan — is NP-
complete. These results refute the claim by Pecora, Rasconi,
and Cesta (2004) that planning graph-based planners maxi-
mize concurrency, and demonstrate that heuristics admissi-
ble for parallel planning, such as A" (Haslum and Geffner
2000), are inadmissible for PO/POCL search. We also es-
tablish tight complexity bounds for makespan-bounded plan
existence: PSPACE-complete for binary encoding and NP-
complete for unary encoding. Since unit-duration actions are
a special case of durative actions (Fox and Long 2003), our
nonequivalence result—that POCL plans can achieve shorter
makespans than parallel plans—applies directly to temporal
planning. Ultimately, our work provides a formal character-
ization of these trade-offs, demonstrating that the choice of
representation has significant, now-quantified consequences
for plan quality and computational effort.

Acknowledgments

Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

References

Bercher, P.; Geier, T.; and Biundo, S. 2013. Using State-
Based Planning Heuristics for Partial-Order Causal-Link
Planning. In Advances in Artificial Intelligence, Proceedings
of the 36th German Conference on Artificial Intelligence (KI
2013), 1-12. Springer Berlin Heidelberg.

Bercher, P.; Haslum, P.; and Muise, C. 2024. A Survey
on Plan Optimization. In Proceedings of the 33rd Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2024), 7941-7950. IJCAI Organization.

Bercher, P.; Lin, S.; and Alford, R. 2022. Tight Bounds for
Hybrid Planning. In Proceedings of the 31st International
Joint Conference on Artificial Intelligence (IJCAI 2022),
4597-4605. IJCAI Organization.

Bercher, P.; and Olz, C. 2020. POP = POCL, Right? Com-
plexity Results for Partial Order (Causal Link) Makespan
Minimization. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence (AAAI 2020), 9785-9793. AAAI
Press.

Bit-Monnot, A. 2023. Experimenting with Lifted Plan-
Space Planning as Scheduling: Aries in the 2023 IPC. In
IPC 2023 — Proceedings of the Hierarchical Task Network
(HTN) Track of the 11th International Planning Competi-
tion: Planner and Domain Abstracts, 7-9.

Bit-Monnot, A.; Ghallab, M.; Ingrand, F.; and Smith, D. E.
2020. FAPE: A Constraint-based Planner for Generative and
Hierarchical Temporal Planning. arXiv:2010.13121.

Blum, A. L.; and Furst, M. L. 1997. Fast Planning through
Planning Graph Analysis. Artificial Intelligence, 90(1):
281-300.

Brooks, R. L. 1941. On Colouring the Nodes of a Network.
Mathematical Proceedings of the Cambridge Philosophical
Society, 37(2): 194-197.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
69(1): 165-204.

Bickstrom, C.; and Jonsson, P. 2011. All PSPACE-
Complete Planning Problems Are Equal but Some Are More
Equal than Others. In Proceedings of the 4th Annual Sympo-
sium on Combinatorial Search (SoCS 2011), 10-17. AAAI
Press.

Cavrel, N.; Pellier, D.; and Fiorino, H. 2023. Efficient HTN
to STRIPS Encodings for Concurrent Planning. In 2023
IEEE 35th International Conference on Tools with Artificial
Intelligence (ICTAI 2023), 962-969. IEEE.

Firsov, O.; Fiorino, H.; and Pellier, D. 2023. OptiPlan — a
CSP-based partial order HTN planner. In IPC 2023 — Pro-
ceedings of the Hierarchical Task Network (HTN) Track of
the 11th International Planning Competition: Planner and
Domain Abstracts, 10-11.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61-124.

Garey, M. R.; Johnson, D. S.; and Stockmeyer, L. 1974.
Some Simplified NP-complete Problems. In Proceedings
of the 6th Annual ACM Symposium on Theory of Computing
(STOC 1974), 47-63. Association for Computing Machin-
ery.

Haslum, P.; and Geffner, H. 2000. Admissible Heuristics
for Optimal Planning. In Proceedings of the Fifth Inter-
national Conference on Artificial Intelligence Planning Sys-

tems (AIPS 2000), 140-149. AAAI Press.

Karp, R. M. 1972. Reducibility among Combinatorial Prob-
lems. In Complexity of Computer Computations, 85—103.
Springer US.

Lawler, E. L. 1976. A Note on the Complexity of the Chro-
matic Number Problem. Information Processing Letters,
5(3): 66-67.

Lotem, A.; Nau, D. S.; and Hendler, J. A. 1999. Using Plan-
ning Graphs for Solving HTN Planning Problems. In Pro-
ceedings of the Sixteenth National Conference on Artificial
Intelligence (AAAI 1999), 534-540. AAAI Press.

Olz, C.; and Bercher, P. 2019. Eliminating Redundant Ac-
tions in Partially Ordered Plans — A Complexity Analysis.
In Proceedings of the 28th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2019), 310-319.
AAAI Press.

Pecora, F.; Rasconi, R.; and Cesta, A. 2004. Assessing
the Bias of Classical Planning Strategies on Makespan-
Optimizing Scheduling. In Proceedings of the 16th Eu-
ropean Conference on Artificial Intelligence (ECAI 2004),
677-681. I0S Press.

Rintanen, J. 2012. Planning as Satisfiability: Heuristics. Ar-
tificial Intelligence, 193: 45-86.

Sapena, O.; Onaindia, E.; and Torrefio, A. 2015. FLAP: Ap-
plying Least-Commitment in Forward-Chaining Planning.
Al Communications, 28(1): 5-20.

Savitch, W. J. 1970. Relationships between Nondeterminis-
tic and Deterministic Tape Complexities. Journal of Com-
puter and System Sciences, 4(2): 177-192.

Vidal, V.; and Geffner, H. 2006. Branching and Pruning:
An Optimal Temporal POCL Planner Based on Constraint
Programming. Artificial Intelligence, 170(3): 298-335.
Weld, D. S. 1994. An Introduction to Least Commitment
Planning. Al Magazine, 15(4): 27-27.

Welsh, D. J. A.; and Powell, M. B. 1967. An Upper Bound
for the Chromatic Number of a Graph and Its Application to
Timetabling Problems. The Computer Journal, 10(1): 85—
86.

Younes, H. L.; and Simmons, R. G. 2003. VHPOP: Ver-
satile Heuristic Partial Order Planner. Journal of Artificial
Intelligence Research, 20: 405-430.

